

Induction Cooking for the Commercial & Residential Kitchens

March 3rd, 2020

Todd Bell, Sr Energy Analyst

What is Electromagnetic Induction?

- Discovered by Michael Faraday in 1831
- It is the production of an electromotive force across an electrical conductor in a changing magnetic field.
- Many applications, including electrical components, motors, generators and cookware.

How does Electric Induction Cooking Work?

- An electrically charged copper coil underneath the hot top surface creates an oscillating electromagnetic field.
- This field induces an electrical current in the cookware that excites its molecules = resistive heating
- The cookware becomes the heat generator, making the appliance very energy efficient!
- Without cookware in the electromagnetic field, no energy is consumed nor heat produced.

How Does It Differ From Conventional Coil Electric Range Tops?

- Traditional range tops use "resistive" heating elements which heat as electrical current passes through them.
- Heat is transferred to the cookware through conduction - the contact of the cookware with the heating element.
- Heating element is slow to heat up and remains on when cookware is removed.

What about Electric Ceramic/Glass Range Tops?

- A Glass or Ceramic surface protects the resistive coil beneath making it easier to clean.
- Heat is this transferred to the cookware through radiation – electromagnetic energy transfers heat form the element to the cookware.
- Just like a conventional electric range top, the heating element is slow to heat up and remains on when cookware is removed.

What about Gas?

- Characterized by an open flame underneath a metal grate
- Heat is transferred to the cookware through conduction as well as convection and radiation
- Very poor efficiency most heat is lost between the burner and cookware

Gas Cooking: Indoor Air Quality Concerns

Most residential hoods do a <u>poor</u> job of removing gas byproducts from the kitchen.

... and what is *Energy* Efficiency exactly?

Energy into Water (Btu)

Efficiency (%) =

Energy into Cooktop (Btu)

A Measure of Useful Work!

Residential Hot Tops How do they Compare? *Performance*

	½ gallon Water Boil Efficiency (%)	Boil Time (min)	Temperature Response (°F over set pt)	Saute Time (min)	Saute Efficiency (%)
Induction	86	10	1.0	7	50
Resistance & Radiant	70	16	5.0	7	38
Gas	31	19	1.7	7	23

How do they Compare? Purchase Cost

Electric Coil

\$300 - \$400

Electric Ceramic

Basic: \$600 Premium: \$3,000

Induction

Basic: \$1,200 Premium: \$5,000

Gas

Basic: \$400 Premium: \$6,000

How do they Compare? Operating Cost

Electric Coil

\$45/year

Electric Ceramic

\$45/year

Induction

\$40/year

Gas

\$30/year

Try before you buy!

Residential Countertop Induction Cooktop (115V)

- 1300, 900, 600 watt settings
- Programmable
- Timer
- \$65!
- Provided via muni & CCA loaner programs

Commercial Kitchen Induction Appliances

Hot Tops/Ranges

Commercial Induction Rangetop Field Study

	Baseline Electric	Baseline Gas	Induction
Average Daily Energy Use	18.2 kWh	1.5 therms	7.4 kWh
Annual Energy Cost	\$1,460	\$600	\$595

@ \$0.22/kwh & \$1.10/therm

Pros, Cons & Misconceptions of Induction

Pros

- Energy Efficient
- High productivity
- No standby energy use
- Low radiant heat
- Safe
- Easy to Clean
- Highly responsive temperature control
- Programmable

Cons & Misconceptions

- Higher purchase price True
- Requires proper cookware True
- No flame for a visual cue True, but some incorporate LED lighting feedback
- Not as fast as gas A misconception
- Durability Like all appliances it depends on how well it is treated
- Utility requirements for high voltage models True

